Memristors in the Context of Security and Al

Abstract—Over the last decade, a lot of research has been
conducted on memristors. Some of this research focuses on
security aspects of memristors. The current study summarizes
and compares five reviews concerned with security applications
of memristors and potential threats when using memristors for
training and storing neural networks. Differences among these
reviews show that different perspectives are necessary to get a
comprehensive overview of security aspects of memristors. By
synthesizing the perspectives of different reviews, this study helps
to get such an overview.

Index Terms—memristors, security, physical unclonable func-
tion (PUF), true random number generator (TRNG)

I. INTRODUCTION

Memristors have repeatedly been proposed as solutions to
overcome limitations of traditional computer architectures.
Chua [1] was the first to theoretically describe memristors
as a basic circuit element in 1971. Even though there has
been controversy over the characterization of memristors as a
basic circuit element [2], a lot of research has evolved around
this technology. Especially since the first implementation of a
memristive device in 2008 [3], many studies on memristors’
characteristics and potential applications have been published.

The goal of this study is to give an overview of security
aspects of memristors. For this purpose, recent reviews on this
topic are examined and compared with each other. The reviews
cover two general perspectives on security aspects of mem-
ristors: (1) potential security applications of memristors like
physical unclonable functions (PUFs) or true random number
generators (TRNGs), and (2) security threats when using
memristors for Al applications and possible countermeasures.
Both of these perspectives are considered in this study. After
providing some background information on memristors and
security primitives in Section II, the reviews included in this
study are compared (Section IIT) and discussed (Section 1V),
before drawing some conclusions in Section V.

II. BACKGROUND

Memristors are circuit elements with a variable resistance
that depends on the amount of electric charge flowing through
a memristor until a certain point in time. Thus, the resistance
of a memristor can be modified by applying a voltage bias. By
distinguishing different levels of resistance, information can
be stored on memristors. Usually two levels of resistance are
distinguished for this purpose, a high resistance state (HRS)
and a low resistance state (LRS) (corresponding to 0 and 1 in
binary code).

Various materials have been used to fabricate memristors,
but they all have a similar structure consisting of two elec-
trodes with an active layer in-between them. The resistance of
the active layer changes when a voltage bias is applied, based

on different mechanisms depending on the material used [2].
To efficiently assemble multiple memristors, they are usually
arranged in crossbar arrays.

The state of a memristor can be non-volatile or volatile.
Non-volatile memristors are especially suitable to be used as
memory devices because they are much faster than other non-
volatile memory technologies. Volatile memristors switch from
HRS to LRS when applying a voltage bias, and spontaneously
switch back into HRS after removing the voltage bias. This
behavior allows to emulate biological neurons, which also
return to their resting state after being stimulated [4]. This
makes memristors a promising technology for neuromorphic
computing.

Another area of application for memristors is in-memory
computation. Performing in-memory computations allows to
bypass the von Neumann bottleneck because no data needs
to be transferred between memory and computing unit. The
capability of memristors to perform in-memory computation
relies on the fact that data can be stored via resistance levels,
and the resistance can be modified by applying a voltage bias.
Thus, by encoding data into a voltage pulse (i.e., the amplitude
and duration) that is applied to a memristor, the data stored on
the memristor can be modified [2]. In particular, this allows
to perform in-memory logic operations or in-memory vector-
matrix multiplications [5].

Besides using memristors for data storage and advanced
computation tasks, they have also been proposed for security
applications. The two main security applications of memristors
are PUFs and TRNGs.

PUFs exploit the intrinsic randomness of hardware devices
that arises from small manufacturing variations. A PUF can
be queried with an input (challenge) and returns a response
that depends on the device and the challenge. Due to the
intrinsic randomness of the device, the responses are unpre-
dictable. Desirable characteristics of PUFs are uniqueness (i.e.,
different devices should return different responses for the same
challenge), reliability (i.e., a PUF should repeatedly return the
same response for the same challenge, even under different
environmental conditions), and unclonability (i.e., for a given
device, it should be difficult to manufacture another device
that returns the same responses) [6].

PUFs can be divided into weak and strong PUFs [6]. Weak
PUFs are characterized by having a high reliability, but they
only provide a small number of challenge response pairs
(possibly only one). Thus, the security of a weak PUF depends
on not disclosing the response. By contrast, strong PUFs
provide a large number of challenge response pairs, so that
it is infeasible to enumerate all of these pairs. Therefore, the
security of a strong PUF does not depend on keeping responses



secret, as long as challenge response pairs are only used once.

A specific type of PUFs are public PUFs (PPUFs) [7].
PPUFs are based on a publicly available simulation model for
a PUF device. Running the simulation model takes much more
time than using the physical device to generate a response for a
given challenge. This allows to verify that someone has access
to the physical device. The verifier can choose a challenge and
simulate the response, send the response to the verifying party
and ask for the corresponding challenge. Then it is feasible to
test all possible challenges with the physical device, but not
with the simulation model.

TRNGs are a security primitive for generating random num-
bers, which are vital for various cryptographic applications.
TRNGs are based on unpredictable physical processes and
therefore provide a high degree of randomness, but they are
slow in generating random number sequences. By contrast,
pseudo random number generators (PRNGs) provide an effi-
cient method to generate long sequences of numbers. However,
since PRNGs use a deterministic algorithm that only depends
on its initial state (seed), their output is not truly random. A
typical setup to combine the strengths of PRNGs and TRNGs
is to use a TRNG to generate a seed for a PRNG, and then
use the PRNG to generate many random numbers.

III. REVIEWS ON SECURITY ASPECTS OF MEMRISTORS

For the following overview and discussion, the reviews [8]—
[12] are considered. These reviews have been selected by
searching for the most relevant reviews concerned with secu-
rity aspects of memristors in Google Scholar. For this purpose,
the first five reviews among all articles since 2019 have been
selected when using the search string “memristors security”
and sorting the results by relevance (as provided by Google
Scholar on 29 October 2023). The search was restricted to
articles since 2019 to focus on the most recent developments,
while covering enough time to include relevant reviews. This
becomes evident when varying the time span for the search:
when considering all articles since 2018, the selection of
reviews does not change (compared considering all articles
since 2019), while reviews with high citation impact would
be excluded when reducing the time period even more.

Among the aforementioned reviews, [8]-[10] are the most
relevant ones according to their citation counts as they all
received more than 20 citations, whereas the reviews of
Singh [11] and Zou et al. [12] both have less than ten citations
(until November 2023). Even though these numbers have to
be interpreted carefully because of the different publication
years of the reviews, they show a clear bimodal distribution
in terms of their citation impact.

Regarding the content of the reviews, [8]-[11] have a focus
on the usage of memristors for security applications. While
the reviews of Pang et al. [9], Lv et al. [8], and Singh [11]
consider memristors in general, Wang et al. [10] focus on
volatile memristors. Zou et al. [12] take a fundamentally
different perspective on security aspects of memristors by
describing security threats and possible countermeasures when
using memristors for training and storing neural networks.

The remainder of this section summarizes these reviews and
describes differences between them.

A. Memristor-based PUFs

One major security application of memristors is to use them
as PUFs. The reviews [8]-[11] give an overview of studies
proposing memristor-based PUF designs. Fig. 1 visualizes the
coverage of studies in the reviews. The figure illustrates that
Pang et al. [9] consider a lot more studies than the other
reviews. Lv et al. [8] cover considerably more studies than
Wang et al. [10] and Singh [11], which both only cover three
studies introducing approaches to implement memristor-based
PUFs. Whereas both Pang et al. [9] and Lv et al. [8] both
consider studies that no other of the four reviews covers,
all studies considered by Wang et al. [10] or Singh [11] are
covered by Pang et al. [9] or Lv et al. [8].

Pang et al. [9] distinguish four types of memristor-based
PUFs. Two of these types are memristor-based weak and
strong PUFs, following the general distinction between weak
and strong PUFs described in Section II). Memristor-based
weak PUFs exploit small variations in the switching proba-
bility (i.e., resistance variability) between different memristor
cells of a crossbar array. The general idea behind this approach
is to apply a voltage bias to memristor cells such that their
switching probability is close to 50%. Then, the memristor
cells randomly settle to a state, and these states can be used
as a sequence of random bits. A straightforward approach to
implement memristor-based strong PUFs is to compare the
resistance between two memristor cells of a crossbar array.
Due to the resistance variability of memristors, this also allows
to generate random bits. In this approach, the position of the
two cells to compare can be regarded as a PUF challenge.
This yields a large number of possible challenge-response
pairs, making the approach a suitable strong PUF design.
Another approach to implement memristor-based strong PUFs
mentioned in [9] is to use memristor-based arbiter PUFs or
memristor-based ring oscillator PUFs.

Besides the distinction of memristor-based weak and strong
PUFs, Pang et al. [9] identify two further types of memristor-
based PUFs corresponding to specific use cases. The first of
these use cases are memristor-based PPUFs. As described in
Section II, a publicly available simulation model of a PPUF
device (here: a memristor crossbar) serves as a verification
tool. The simulation model for a memristor crossbar is based
on the physical characteristics of its memristor cells, and
simulation requires computationally heavy operations. Simu-
lating the output for a large memristor crossbar is infeasible
because this would require to simulate all possible current
paths, which grow exponentially with the crossbar’s size. How-
ever, simulating the output of a subset of memristor cells is
feasible. In contrast to the simulation model, the corresponding
physical device can be used to compute the output of the
whole memristor crossbar within a reasonable amount of time.
This discrepancy in runtime between simulation model and
physical device can be exploited to define an authentication
protocol [13].



Pang et al. (2019) ”,Smgh (2021)

21

\ \Lvet al. (2021)

X
Wang et al. (2020)

Fig. 1. Number of studies introducing a memristor-based PUF approach that
are covered in the reviews of Pang et al. [8]-[11].

The last type of memristor-based PUFs identified by Pang
et al. [9] is characterized by its strong resistance machine
learning attacks. Machine learning attacks can be a threat
to PUFs if there are strong correlations among the PUF’s
challenge response pairs. The proposed design uses two layers
of memristor cells. The challenge specifies a set of cells in the
first layer, and the (random) resistance states of these cells in
the first layer are used to select one cell in the second layer.
The output of this cell in the second layer is then used as the
PUF’s response bit. This approach is better suited to prevent
machine learning attacks than a PUF design based on a single
memristor layer or a conventional arbiter PUF.

Similar to Pang et al. [9], Lv et al. [8] also identify nano-
PPUFs as one type of memristor-based PUFs. However, apart
from this type of memristor-based PUFs, Lv et al. [8] propose
a different categorization compared to Pang et al. [9]. One
of the corresponding types of memristor-based PUFs that Lv
et al. [8] refer to are hybrid memristor-CMOS PUF circuits.
In this setup, memristor cells are combined with ordinary
CMOS-based PUF designs like arbiter PUFs or ring oscillator
PUFs. Since the structure of memristors is compatible with the
structure of CMOS hardware, they can be efficiently integrated
in one device. Combining memristors and CMOS hardware
in one device can not only increases a PUF’s security, but
also allows to reduce hardware resources and avoid costly
postprocessing compared to PUFs solely based on CMOS
hardware. Furthermore, Lv et al. [8] identify a PUF design
based on a diffusive (volatile) memristor crossbar as another
type of memristor-based PUFs. For this PUF design, Lv et
al. [8] refer to a study that is categorized as a memristor-based
weak PUF approach in [9].

Finally, Lv et al. [8] describe a memristor-based approach
to prove the destruction of cryptographic keys stored on a
device. Such a functionality allows to revoke a key on a remote
device or restrict its validity. Proving the destruction of keys
on CMOS-based devices is difficult due to their volatile nature,
whereas the non-volatile storage capability of memristors can
be exploited for such a task. The idea of this approach is to
use the resistance variability in the LRS among the cells of a
memristor crossbar array to generate a fingerprint of a device.
The same crossbar array is used to store a cryptographic key.
Then, the fingerprint can only be extracted if no data (i.e.,
no cryptographic key) is stored on the crossbar array, because

only in this case can the resistance in the LRS be measured
for all the cells. Since the variability in the LRS depends
on random manufacturing variations, this approach can be
regarded as a PUF design.

Wang et al. [10] focus on volatile memristors and describe
only one study introducing a PUF design. This study is also
included in [9] (referred to as weak PUF) and [8] (referred
to as diffusive memristor-based PUF). Besides this study,
Wang et al. [10] mention two other studies that are only cited
as exemplary PUF designs based on non-volatile memristors
without describing their approaches. Singh [11] also only
considers three studies for an overview of memristor-based
PUFs. Based on these three studies, Singh [11] identifies two
types of memristor-based PUF designs. First, a design based
on a memristor crossbar array is sketched that follows the
idea of memristor-based weak PUFs described in [9]. Second,
Singh [11] identifies a memristor-based PPUF design, similar
to and based on the same study as in [9] and [8].

B. Memristor-based TRNGs

The second major security application of memristors are
memristor-based TRNGs. Similar to memristor-based PUFs,
the reviews [8]-[11] give an overview of memristor-based
TRNG approaches. Again, Pang et al. [9] cover more studies
than the other reviews (see Fig. 2). The reviews generally cover
fewer studies proposing memristor-based TRNG designs than
studies proposing memristor-based PUF designs. In contrast
to the studies on memristor-based PUFs, there is less overlap
between the reviews regarding studies on memristor-based
TRNGs. For example, each review considers at least one study
that is not considered by any of the other reviews.

A straightforward approach to implement memristor-based
TRNGs described by Pang et al. [9] and Lv et al. [8] is to
exploit memristors’ probabilistic switching behavior. When
applying a voltage bias, the cumulative probability function of
cells switching between HRS and LRS follows a lognormal
distribution. The shape of this distribution depends on the
amplitude and duration of the voltage bias. This can be used to
generate random bit patterns with a memristor crossbar array
by choosing an adequate voltage bias amplitude and duration
(e.g., implying a 50% switching probability).

Another mechanism that allows to implement memristor-
based TRNGs described by Pang et al. [9] is random tele-
graph noise (RTN). RTN occurs due to random trapping
and detrapping of charge carriers, leading to sudden unpre-
dictable changes in current levels [2]. Compared to CMOS-
based TRNGs, implementations exploiting the memristors’
RTN require less power and can be implemented without a
preamplifier. However, RTN-based TRNGs can only achieve
a low output frequency. Another drawback is that the RTN
frequency and amplitude are difficult to control, which may
lead to instabilities in the random number output and require
postprocessing the output.

The next approach to implement memristor-based TRNGs
described by Pang et al. [9] is to use current fluctuations in
a memristor cell (while the cell is settled in either HRS or



Pang et al. (2019) Wang et al. (2020)

10
_Lvetal. (2021)

1

1 | — Singh (2021)

Fig. 2. Number of studies introducing a memristor-based TRNG approach
that are covered in the reviews of Pang et al. [8]-[11].

LRS). More specifically, current differentials over time can
be modeled to follow a Gaussian distribution. This pattern is
attributed to Brownian motion, which is a random physical
process. Thus, the current differences are a good source of
randomness for TRNGs [14]. While using current differences
for implementing memristor-based TRNGs results in a more
stable output and is easier to control than RTN-based TRNGs,
Pang et al. [9] identify low output frequency as a disadvantage
of this approach.

Pang et al. [9] also describe a memristor-based TRNG
design that provides a higher output frequency than the afore-
mentioned approaches. In this design, resistance variations of
memristor cells across set-reset cycles are used as a source
of randomness. To achieve a high output frequency based
on cycle-to-cycle resistance variation, a memristor with high
switching speed and high endurance is necessary. Another
limitation of this approach is its high power consumption due
to the high switching frequency.

The last type of memristor-based TRNGs described by Pang
et al. [9] uses the write delay time of a volatile memristor
as a source of randomness. In particular, the delay time
between a voltage pulse and the following switch of a volatile
memristor from HRS to LRS is used. Since this delay time
follows a random distribution, it can be used to implement
a TRNG. Besides good randomness and stability, the main
advantage of this approach compared to CMOS-based TRNGs
and the aforementioned memristor-based TRNGs is that no
postprocessing is necessary. Since this design also requires
frequent switches between HRS and LRS, Pang et al. [9]
mention challenges similar to those for TRNGs based on
cycle-to-cycle resistance variation: the memristor must have
a high endurance and high switching speed, and the repeated
switching implies a high power consumption.

For describing the approach to use the write delay time of a
volatile memristor to implement a TRNG, Pang et al. [9] refer
to one particular study. This study is also considered in the
reviews of Lv et al. [8] and Wang et al. [10]. Whereas Pang et
al. [9] mention high power consumption as a challenge of this
TRNG, Lv et al. [8] and Wang et al. [10] argue that it has a
low power consumption compared to other TRNGs (CMOS-
based TRNGs, TRNGs based on nonvolatile memristors, and
further TRNGs based on volatile memristors). The viewpoint
of Lv et al. [8] and Wang et al. [10] is also in line with
the original study proposing this TRNG implementation [15].

However, Pang et al. [9] focus on comparing the approach
to other types of memristor-based TRNGs described in their
review, some of which do not require to repeatedly switch
the memristor cells and therefore consume less power than
the TRNG implementation of Jiang et al. [15]. Thus, the
different perspectives on the role of power consumption in the
design proposed by Jiang et al. [15] is a matter of reference
approaches considered for comparison rather than differences
in the evaluation of the approach itself.

Besides the TRNG design proposed by Jiang et al. [15],
Wang et al. [10] also include a second study that proposes
a TRNG design based on the write delay time in volatile
memristors in their review. This implementation achieves a
smaller overall circuit area compared to the design proposed
by Jiang et al. [15] by replacing a comparator and a resistor
with a second memristor and an AND gate. However, the
operation voltage of this design is higher than for the approach
of Jiang et al. [15], leading to a higher power consumption
when generating random numbers [10]. Despite explicitly
focusing on volatile memristors, Wang et al. [10] also consider
TRNG designs based on non-volatile memristors. In particular,
approaches based on RTN and probabilistic switching of
memristors are described.

The review of Singh [11] considers only one study propos-
ing a memristor-based TRNG design. In this design, mem-
ristors are included in ring oscillators, which increases the
entropy compared to purely CMOS-based ring oscillators.

C. Further security applications of memristors

Lv et al. [8] and Singh [11] mention further security
applications of memristors besides PUFs and TRNGs in their
reviews. However, only short and high-level descriptions are
provided, which is why this section only gives a brief overview
of these applications.

One security application mentioned by both Lv et al. [8]
and Singh [11] is to use memristors for implementing chaotic
circuits. Chaotic circuits are deterministic nonlinear systems
generating an unpredictable signal that can be used to encrypt
messages. Memristors are suitable components for chaotic
circuits due to their nonlinear behavior. Other security ap-
plications of memristors mentioned by Singh [11] are using
them for tamper detection, forensics, or efficient encryption
techniques. Tamper detection and forensics may be facilitated
by the phenomenon that the resistance of memristors slightly
changes as a result of read operations. This reduction in resis-
tance allows to detect unauthorized access to data stored on a
memristor. Efficient encryption of data stored on memristors
can be achieved based on the randomness of sneak paths in a
memristor crossbar array.

D. Security threats of using memristors in Al

Zou et al. [12] are not concerned with security applications
of memristors in their review, but with security threats when
using memristors for training and storing neural networks.
Memristors can be a valuable technology for these tasks due
to their capability to perform in-memory computations and



their potential non-volatility. However, using memristors for
training and storing neural networks may also bring along
security threats. When discussing such threats and potential
countermeasures, Zou et al. [12] distinguish between black-
box and white-box attack models. The black-box attack model
assumes that the attacker can manipulate inputs, observe
outputs, and observe side-channels. In the white-box attack
model, the attacker also has access to the trained weights of
a neural network model.

One type of black-box attacks considered by Zou et al. [12]
are learning attacks. The goal of learning attacks is to steal a
proprietary neural network! that is not openly available itself,
but for which input-output pairs can be collected (e.g., by
querying the model with selected inputs). The input-output
pairs can then be used to train a new neural network, which
predicts the first model’s predictions. If an attacker has physi-
cal access to a device storing the weights of a neural network,
memristors can help to prevent learning attacks. For certain
memristors, their resistance changes over time or with every
read operation. Thus, data stored on such memristors needs
to be refreshed periodically or after some read operations. If
a neural network is stored on such a device and refreshing
the memristor cells is only allowed for authorized users, an
unauthorized user can only collect a limited number of input-
output pairs. This can prevent stealing the model stored on
the device because sufficient training data is necessary for
achieving a good performance of a neural network.

The second type of black-box attacks described by Zou et
al. [12] are side-channel attacks. Side-channel attacks exploit
side effects of a device during operation such as power
consumption or runtime to extract confidential information.
Memory access patterns have been described as a possible
target for side-channel attacks to gain information about the
structure of a neural network [16]. Zou et al. [12] argue that
this attack may also be possible for neural networks stored
on memristive devices. A countermeasure against such attacks
are oblivious RAM algorithms, which hide memory access
patterns [12].

Assuming a white-box attack model implies more security
threats for neural networks stored on memristive devices than a
black-box attack model. Since memristors can be non-volatile,
weights can be stored permanently on memristive devices.
Thus, if an attacker has physical access to a memristive device
storing the weights of a neural network, the attacker may be
able to simply read them or use microprobing techniques [12].

The general strategy to mitigate this threat is to modify a
neural network’s weights such that no inference is possible any
more without additional information. A straightforward way to
achieve such an obfuscation of neural network weights stored
on a memristive device is to encrypt each weight. However,
this approach adds considerable overhead due to repeated
encryption and decryption operations during inference. This
overhead can be reduced by only encrypting the most signifi-

!Learning attacks can be applied to any type of machine learning model
that calculates predictions for given inputs. Here, only neural networks are
considered because Zou et al. [12] also focus on neural networks.

cant weight of each layer of the neural network. Without the
most significant weight in each layer, no reasonable inference
is possible any more [12]. Another approach to protect a
neural network’s weights is to permute them. The permuted
weights allow efficient inference if the permutation applied
to the original weights is known. Otherwise, the permuted
weights do not reveal enough information to perform inference
operations.

To bind a neural network to a specific device, the afore-
mentioned techniques to obfuscate weights can be combined
with fingerprinting the device. The randomness inherent to
memristors can be used for this purpose, similar to memristor-
based PUFs or TRNGs.

IV. DISCUSSION

Even though the reviews [8]-[11] all deal with security
applications of memristors, they cover different sets of studies.
Pang et al. [9] generally include considerably more studies
than the other reviews. Likewise, Lv et al. [8] cover con-
siderably more studies on memristor-based PUF approaches
than Wang et al. [10] and Singh [11], but these three reviews
differ only slightly with regard to the coverage of studies
on memristor-based TRNG approaches. Thus, Pang et al. [9]
provide the most extensive overview of memristor-based PUFs
and TRNGs among the reviews. The relatively small number
of studies included in Wang et al. [10] can be attributed to
their limited focus on volatile memristors.

Lv et al. [8] and Singh [11] provide a wider perspective
on security applications than Pang et al. [9] by mentioning
additional applications besides PUFs and TRNGs. However,
the reviews of Lv et al. [8] and Singh [11] contain shorter
and rather high-level descriptions compared to Pang et al. [9],
which makes it difficult to get a complete picture of security
applications of memristors.

Pang et al. [9] and Lv et al. [8] both provide a categorization
of memristor-based PUFs. However, the two reviews refer to
different categories for this purpose. Pang et al. [9] consider
potential use cases for their categorization: the distinction
between memristor-based weak and strong PUFs is rather
general, whereas memristor-based PPUFs and the PUF design
aimed at defending against machine learning attacks are rather
specific use cases. The two specific PUF approaches can also
be regarded as strong PUFs because they allow to generate a
large number of challenge response pairs.

Lv et al. [8] consider not only potential use cases (PPUFs,
proving key destruction), but also particular characteristics of
the memristive devices (e.g., hybrid memristor-CMOS struc-
ture vs. memristor crossbar arrays, volatile vs. non-volatile
memristors) for their categorization of memristor-based PUFs.
While a categorization based on potential use cases allows
to select the right approach for a given problem, referring
to characteristics of memristors gives a better overview of
existing techniques to construct memristor-based PUFs.

The memristor-based TRNGs described by Pang et al. [9]
are categorized based on the sources of randomness on which
the TRNG designs are based upon. The other reviews provide



no such categorization of memristor-based TRNGs, but only
describe the small number of studies they include individually
without grouping them into generalized categories.

The fact that security applications of memristors apart from
PUFs and TRNGs (e.g., chaotic circuits) are either not even
mentioned in the reviews or only very briefly suggests that
such applications do not play an important role. However, if
a review aims to give a comprehensive overview of security
applications of memristors, all applications discussed in the
literature should be considered. Alternatively, if reviews focus
on certain applications, this restriction should at least be stated
explicitly.

The review of Zou et al. [12] shows that the usage of
memristors for learning and storing neural networks may
also have security implications. Some security threats and
countermeasures mentioned in this review specifically apply
to memristors (e.g., side-channel attacks on memristors, or
using resistance drift in memristors to thwart learning attacks).
Howeyver, other threats and countermeasures are relevant inde-
pendently of the underlying hardware. For example, learning
attacks or encrypting the weights of a model can be performed
on memristive as well as other devices. This distinction
between techniques specifically aiming at memristive devices
and hardware-agnostic techniques is somewhat unclear in [12],
which makes it difficult to assess security implications of
memristors in artificial intelligence systems. Nevertheless,
reviewing security threats and countermeasures when using
memristors for learning and storing neural networks adds an
important perspective on security aspects of memristors.

V. CONCLUSION

Over the last decade, various studies have addressed security
aspects of memristors, and several reviews have synthesized
parts of this research. The current study summarizes and
compares five of these reviews that have been published
recently. The differences among the reviews show that each of
them has a different focus. With regard to security applications
of memristors, Pang et al. [9] provide the most extensive
overview of memristor-based PUFs and TRNGs, whereas Lv
et al. [8] and Singh [11] provide a wider perspective by
considering further security applications in addition to PUFs
and TRNGs. Wang et al. [10] has a narrow focus on volatile
memristors, but is also concerned with security applications
like PUFs and TRNGs. By contrast, Zou et al. [12] contribute
a very different perspective by addressing security threats
and countermeasures when using memristors for training and
storing neural networks.

The most relevant reviews on security aspects of memristors
among those published since 2019 (according to Google
Scholar) have been considered for this study. While these

reviews are likely to be representative for the corresponding
research field, further reviews may provide additional perspec-
tives and consider other studies than the reviews considered
here. For example, the role of memristors’ material or a

comparison of metrics for measuring PUF performance may be
examined. Such perspectives should also be taken into account

for a comprehensive picture of security aspects of memristors.

REFERENCES

[1] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on circuit theory, vol. 18, no. 5, pp. 507-519, 1971.

[2] M. Lanza, A. Sebastian, W. D. Lu, M. Le Gallo, M.-F. Chang, D. Ak-
inwande, F. M. Puglisi, H. N. Alshareef, M. Liu, and J. B. Roldan,
“Memristive technologies for data storage, computation, encryption, and
radio-frequency communication,” Science, vol. 376, no. 6597, Jun. 2022.

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, pp. 80-83, 2008.

[4] Z. Wang, S. Joshi, S. Savel’Ev, W. Song, R. Midya, Y. Li, M. Rao,
P. Yan, S. Asapu, Y. Zhuo et al., “Fully memristive neural networks for
pattern classification with unsupervised learning,” Nature Electronics,
vol. 1, no. 2, pp. 137-145, 2018.

[5] X. Yang, B. Taylor, A. Wu, Y. Chen, and L. O. Chua, “Research progress
on memristor: From synapses to computing systems,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 69, no. 5, pp. 1845-
1857, 2022.

[6] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclon-
able functions and applications: A tutorial,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1126-1141, 2014.

[7]1 N. Beckmann and M. Potkonjak, “Hardware-based public-key cryptogra-
phy with public physically unclonable functions,” in Information Hiding,
S. Katzenbeisser and A.-R. Sadeghi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 206-220.

[8] S. Lv, J. Liu, and Z. Geng, “Application of memristors in hardware
security: A current state-of-the-art technology,” Advanced Intelligent
Systems, vol. 3, no. 1, 2021.

[9] Y. Pang, B. Gao, B. Lin, H. Qian, and H. Wu, “Memristors for hardware

security applications,” Advanced Electronic Materials, vol. 5, no. 9,

2019.

R. Wang, J.-Q. Yang, J.-Y. Mao, Z.-P. Wang, S. Wu, M. Zhou, T. Chen,

Y. Zhou, and S.-T. Han, “Recent advances of volatile memristors:

Devices, mechanisms, and applications,” Advanced Intelligent Systems,

vol. 2, no. 9, 2020.

[11] J. Singh, “Implementation of memristor towards better hard-

ware/software security design,” Transactions on Electrical and Elec-

tronic Materials, vol. 22, no. 1, pp. 10-22, 2021.

M. Zou, N. Du, and S. Kvatinsky, “Review of security techniques for

memristor computing systems,” Frontiers in Electronic Materials, vol. 2,

2022.

J. Rajendran, G. S. Rose, R. Karri, and M. Potkonjak, “Nano-ppuf: A

memristor-based security primitive,” in 2012 IEEE Computer Society

Annual Symposium on VLSI, 2012, pp. 84-87.

Z. Wei, Y. Katoh, S. Ogasahara, Y. Yoshimoto, K. Kawai, Y. Ikeda,

K. Eriguchi, K. Ohmori, and S. Yoneda, “True random number generator

using current difference based on a fractional stochastic model in 40-nm

embedded reram,” in 2016 IEEE International Electron Devices Meeting

(IEDM). 1EEE, 2016, pp. 4-8.

H. Jiang, D. Belkin, S. E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi,

R. Midya, C. Li, M. Rao et al., “A novel true random number generator

based on a stochastic diffusive memristor,” Nature communications,

vol. &, no. 1, p. 882, 2017.

W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional

neural networks through side-channel information leaks,” in Proceedings

of the 55th Annual Design Automation Conference, 2018, pp. 1-6.

[10]

[12]

[13]

[14]

[15]

[16]



	Introduction
	Background
	Reviews on security aspects of memristors
	Memristor-based PUFs
	Memristor-based TRNGs
	Further security applications of memristors
	Security threats of using memristors in AI

	Discussion
	Conclusion
	References

